The generator matrix

 1  0  0  1  1  1  1  1  1  6  1  1 X+6  1 2X+3  1 2X  1  1  X  1  3  1  1  1 2X  1  1  1 2X  1  1  1  1  1  1  1 2X+6  0  1 2X+3  1  1  6 X+3 X+6  1  1  1  1  6  1  1  1 2X+3  0  1  1  1  1  1 X+6  1  1 2X  1 2X+3  1  1  1
 0  1  0  6  1  7  5  X  8  1 2X+7 2X+5  1 X+3  1 2X X+6 2X+3 2X+1  1 X+2  1  8  7  3  1 X+5 X+7 2X+2  1 2X+2  4 2X+4 X+4 2X  X X+8  1 2X+3  0 2X+6 X+3  2  1  1  1 2X+8 X+7 X+8 2X+8 X+6  3 X+5  X  1  1  0  4 2X+6 2X+2 2X+4  1 2X+8  7  3 2X+7  1 2X+6 X+7  1
 0  0  1 2X+7 2X+1  6 X+2 X+8 2X  1 2X+5  7  5 2X+3 X+6  4  1 2X+2 2X+4 X+1  8 2X X+3  2 X+7 2X+2  4  7  5  5 2X+6 X+6 X+5  3  0 2X+7 X+4  7  1 X+5  1 X+6 2X+8 2X+8 2X+3  7 2X+7 X+1 X+3  3  1  1 2X+8  8 X+5  X 2X+5 X+2 X+1  X  X  0 X+4  7  1  1 X+4 2X+6 2X+5  X

generates a code of length 70 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 134.

Homogenous weight enumerator: w(x)=1x^0+966x^134+1398x^135+1542x^136+2094x^137+1956x^138+1692x^139+1974x^140+1634x^141+1038x^142+1404x^143+1328x^144+510x^145+930x^146+540x^147+396x^148+234x^149+16x^150+6x^151+6x^152+12x^153+6x^158

The gray image is a code over GF(3) with n=630, k=9 and d=402.
This code was found by Heurico 1.16 in 1.05 seconds.